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Outline

• What is significant enough to report?
– Multiple Comparison Problem (trials)

• A Multiple Comparison Solution:
False Discovery Rate (FDR)

• FDR Properties
• FDR Example



Significance
• Define “wrong” as reporting false positive:

– Apparent signal caused by background
• Set α a level of potential wrongness

– 2 σ =.05 3 σ = .01 etc.
• Probability of going wrong on one test
• Or, error rate per test



What if you do m tests?
– m is “trials factor” only NE Jour Med demands!
– Don’t want to just report m times as many signals!

• P(at least one wrong) = 1 – (1- α)m

– Use α /m as significance test “Bonferroni”
– Keeps to α the probability of reporting 1 or more 

wrong on whole ensemble of m tests
– Good: control publishing rubbish
– Bad: lower sensitivity (must have more obvious signal)

• For some purposes, have we given up too much?



Bonferroni Who?

• "Good Heavens! For more than forty years 
I have been speaking prose without 
knowing it."
-Monsieur Jourdan in 

"Le Bourgeoise Gentilhomme" by Moliere

I believe that translates to Jordan Goodman?



“Multiple Comparisons”

• Must Control False Positives
– How to measure multiple false positives?

• Chance of any false positives in whole set
• Jargon: Familywise Error Rate (FWER)

– Control by Bonferroni, Bonferroni-Holm,                            
& “Random Field Method” = ???

• False Discovery Rate (FDR)
– Fraction of errors in signal candidates 

• Proportion of false positives among rejected tests
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Goals of FDR

• Tighter than α (single-test)
• Looser than α/m (trials factor/Bonferroni)
• Improve sensitivity (“power”)
• Still control something useful: 

– fraction of false results that you report 
• Catchy TLA





Where did this come from?
Others who have lots of tests!

• Screening of chemicals, drugs
• Genetic mapping
• Functional MRI (voxels on during speech processing)
• Data mining (cookies by milk? direct mail)
• Radio telescope images (at last some astronomy!)

• Common factors:
– Usually expect some real effects
– Can follow up by other means 
– trigger next phase with mostly real stuff





FDR in High Throughput 
Screening

An interpretation of FDR:

expenses wasted chasing “red herrings” 

expenses made on follow-up studiesExp( )≤q

Our GRB alerts?



What is a p-value?
(Needed for what’s next!)

• Crudely, probability that event produced by 
background (“null hypothesis”)
– significance of result, measured in probability
– Same as “sigmas”—different units, that’s all



P value properties:
If all events are background
Distribution of p values = dn/dp should be flat
and have a linearly rising cumulative distribution

N(x) = ∫0
x dp (dn/dp) = x

N(p in [a, b]) = (b-a) 
So expect N(p<pk) = k/m     

Flat also means linear in log-log:  if y = ln p
ln[ dn/dy] vs. y is a straight line

See figure 1 in GRB paper



From GRB 
paper, fig 1

Signal, 
statistics, or 
systematics?

“Best” of 9 plots

Note: A histogram is a binned sorting of the p-values



Benjamini & Hochberg

• Select desired limit q on Expectation(FDR)   
α is not specified!!

• Sort the p-values, p(1) ≤ p(2) ≤ ... ≤ p(m)
• Let r be largest i such that

• Reject all hypotheses 
corresponding to
p(1), ... , p(r).

• Proof this works is not obvious!

p(i)
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q(i/m)/c(m)
p-

va
lu

e

0 1

0
1

q ~ .15

JRSS-B (1995) 57:289-300

p(i) ≤ q(i/m)/c(m)



Take all p’s smaller than last one below



Comments on FDR
• To use method, you must not really new!

– know trials factor
– Be able to calculate small p values correctly

• Lowest p value p(1) always gets tested with q/m
• Even if p(1) fails, FDR allows other p(i) distorting 

the pure-null shape to raise the threshold and 
accept the p(1) … p(j) : you depend on distribution

• Suspect as q → 0 , FDR → Bonferroni in q/m

• You can always quote both α/m and q = <FDR>
– Pick α; run backwards: find q giving that α



Benjamini & Hochberg 
Procedure

• c(m) = 1
– Positive Regression Dependency on Subsets

• Technical condition, special cases include
– Independent data
– Multivariate Normal with all positive correlations

• Result by Benjamini & Yekutieli, Annals of Statistics, in press.

• c(m) = Σi=1,...m 1/i ≈ log(m)+0.5772
– Arbitrary covariance structure

• But this is more conservative—tighter cuts



fMRI Multiple Comparisons 
Problem

• 4-Dimensional Data
– 1,000 multivariate observations,

each with 100,000 elements
– 100,000 time series, each 

with 1,000 observations
• Massively Univariate

Approach
– 100,000 hypothesis

tests
• Massive MCP!
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  .



False Discovery Rate
Illustration:

Noise

Signal

Signal+Noise



Benjamini & Hochberg:
Varying Signal Extent

p = z = 

Signal Intensity 3.0 Signal Extent 1.0 Noise Smoothness 3.0
1



Benjamini & Hochberg:
Varying Signal Extent

p = z = 

Signal Intensity 3.0 Signal Extent 3.0 Noise Smoothness 3.0
3



Benjamini & Hochberg:
Varying Signal Extent

p = 0.000252 z = 3.48  (3.5 σ)

Signal Intensity 3.0 Signal Extent 5.0 Noise Smoothness 3.0
4



Benjamini & Hochberg:
Varying Signal Extent

p = 0.007157 z = 2.45 (2.5 σ: stronger signal)

Signal Intensity 3.0 Signal Extent 16.5 Noise Smoothness 3.0
6



Benjamini & Hochberg:
Varying Signal Extent

p = 0.019274 z = 2.07 (2.1 σ: stronger signal)

Signal Intensity 3.0 Signal Extent 25.0 Noise Smoothness 3.0
7



Benjamini & Hochberg: 
Properties

• Adaptive
– Larger the signal, the lower the threshold
– Larger the signal, the more false positives

• False positives constant as fraction of rejected tests
• Not a problem with imaging’s sparse signals

• Smoothness OK
– Smoothing introduces positive correlations



FDR Example:
Plot of FDR Inequality

p(i) ≤ q ( i/m)/c(m)



FDR: Example

FDR ≤ 0.05
Arbitrary Cov.

t0 = 5.0747

FWER ≤ 0.05
Bonferroni
t0 =  5.485

FDR ≤ 0.05
Indep/PRDS
t0 = 3.8119



FDR: Conclusions
• False Discovery Rate

– A new false positive metric
• Benjamini & Hochberg FDR Method

– Straightforward solution to fNI MCP
– Just one way of controlling FDR

• New methods under development
e.g. C. Genovese or J. Storey

• Limitations: best for independent data
– Arbitrary dependence means less sensitive test

Start

Ill

http://www.sph.umich.edu/~nichols/FDR Prop



Sequential Variant of Bonferroni

Bonferroni-Holm 
• Like Bonferroni, control total error α across all tests

Threshold at α/(m+1-i) starting at p(1)

but stop at the first failure
loosens cut mildly as more pass;   
identical to α/m if none pass

α/(m+1-i) ≈ (α/m){1+(i-1)/m} << α(i/m) = FDR(α)



References

• ApJ 122: 3492-3505 Dec 2001 (I have pdf)

• ApJ 123: 1086-1094 Dec 2002 (I have pdf)
• The statistical literature is under active development:

– understand in terms of mixtures (signal + background) and Bayes
– get better sensitivity by correction for mixture
– estimating FDR in an existing data set, or FDR with given cuts
– calculate confidence bands on FDR

• The statistics papers are harder to read; can provide…



GRB Paper Comments

• It’s not 1012 trials; rather chose α/m = 10-12

– maybe 109 with q=.001?
– Chosen by what criterion? 
– What efficiency considerations included?

• Do we understand our p distribution?
– Should predict effect of loosening cuts!

• Looks like limits independent of data?



From GRB 
paper, fig 1

Signal, 
statistics, or 
systematics?

Note: A histogram is a binned sorting of the p-values









Genovese and Wasserman emphasize the 
sample quantity     N1|0 /R 

Storey emphasizes E(N1|0 /R | R>0) 

But both keep the term FDR for their versions
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